

Original Article | Open Access | Peer Reviewed

Implementing Closed-Loop Control Systems in Educational Management: The Case of the Training Sector at PAAET, Kuwait

Homoud Alqattan¹ and Afrah Alradaan²

¹ PAAET. Email: ha.aqattan@paaet.edu.kw.

² PAAET. Email: aa.alradaan@paaet.edu.kw.

ORCID iD: 1https://orcid.org/0009-0008-2187-5339

Address for Correspondence:

Dr. Homoud Algattan (ha.aqattan@paaet.edu.kw).

Copyright and Permission:

© 2025. The Author(s). This is an open access article distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits sharing, adapting, and building upon this work, provided appropriate credit is given to the original author(s). For full license details, visit https://creativecommons.org/licenses/by/4.0/.

Article History:

Received: 31 July 2025; Accepted: 4 September 2025; Published: 6 September 2025

Abstract

This paper explores the application of closed-loop control systems in educational management to enhance learning personalization, real-time feedback, resource optimization, and the predictability of learning outcomes. Feedback control loops originated from the engineering discipline that uses feedback schemes to check and balance as needed to correct variations from a set goal. When applied to education, they make it possible to use flexible approaches and provide students with effective teaching methods that meet their requirements and stimulate interest in learning. The study utilizes methods such as case studies, simulations, and critique of closed-loop systems related to individualized education. Results indicate significant benefits: greater participation by the students, effective use of resources, and quantifiable results based on educational objectives. The incorporation of real-time feedback processing allows for dynamic teaching adjustments, effectively addressing the gap between fast and slow learners and ensuring thorough concept reinforcement. Furthermore, the work of the framework relates to the change from standardized and formal behavioral patterns in general to flexible and scientifically based learning conditions. These findings are particularly relevant in developing the concept that a closed-loop system could revolutionize conventional concepts in education by responding to learners' needs by providing individual instruction. This innovative methodology has implications in policy, especially regarding the design of curriculum and assessment practices, which means that there is a need for a revolutionary framework that is flexible enough to meet the learning needs of all children while utilizing resources efficiently.

Keywords

Closed-Loop Control System, Training and Learning, Real-Time Feedback, Resource Optimization and Predictive Analytics

Volume 14, 2025

Publisher: The Brooklyn Research and Publishing Institute, 442 Lorimer St, Brooklyn, NY 11206, United States.

DOI: https://doi.org/10.15640/jehd.v14p7

Reviewer: Dr. Elza Mesquita, Transdisciplinary Research Center in Education and Development (CITeD), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; ORCID iD: https://orcid.org/0000-0001-5986-0839; Email: elza@ipb.pt

Citation: Alqattan, H., & Alradaan, A. (2025). Implementing Closed-Loop Control Systems in Educational Management: The Case of the Training Sector at PAAET, Kuwait. *Journal of Education and Human Development*, 14, 81-86. https://doi.org/10.15640/jehd.v14p7

Introduction

Closed-loop control systems, traditionally applied in engineering and automation, are feedback-based mechanisms that allow for continuous monitoring and adjustment to achieve desired outcomes. These systems are most useful in cases where these systems should be very precise, for some temperature control or auto-cruise systems (Ghita et al., 2020). This paper examines whether closed-loop control systems can be useful in the management of schooling with special reference to the tailor-made learning concept in which instant responsiveness is critical.

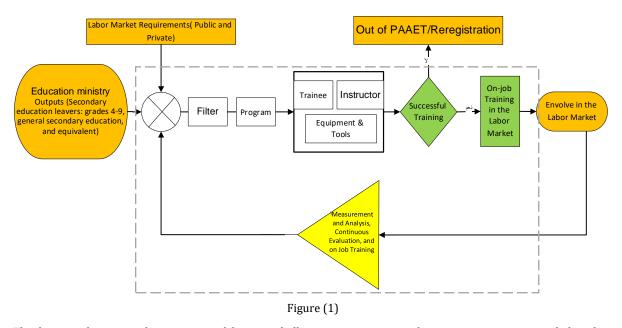
In traditional educational models, feedback mechanisms are often delayed or absent, limiting responsiveness to real-time student performance. However, by applying closed-loop principles in the development of educational programs, feedback can be used to control the process of learning constantly. This can lead to improved learning outcomes because learning activities are designed with regards to the features of the learner (Benjamin, 2012). This paper aims at outlining objectives, results, and research activities that could be employed to adopt closed-loop control systems within learning institutions.

However, when conducting research involving data collection and analysis, it is essential to prioritize data integrity to ensure that the information gathered is accurate, complete, and reliable. Obtaining proper student consent is crucial to respect individuals' autonomy and to comply with ethical standards, allowing participants to make informed decisions about their involvement. Privacy protections must be implemented to safeguard personal information, preventing unauthorized access or disclosures that could harm participants. Additionally, researchers should seek ethical approval from relevant review boards to ensure that their study adheres to ethical guidelines and legal requirements. Ultimately, careful consideration of these factors helps maintain the integrity of the research process and protects the rights of all participants involved.

Objectives

- 1. **Enhance Learning Personalization**: Develop a closed-loop system that continuously monitors individual student performance to adjust the learning process. This helps to enhance understanding of group learning for every single student in order to promote better delivery results.
- Real-Time Feedback and Adaptability: Employ the use of formative assessments, which facilitate the
 provision of timely feedback to the learners and instructors so as to facilitate modification of teaching
 techniques or course content depending on the needs of the students.
- Resource Optimization: Develop guidelines for determining which resources to commit during learning, such as time on instruction or textbooks and other learning materials, freeing up education investments for the diverse needs of the learners.
- 4. **Predictability of Learning Outcomes:** Adopt predictive analytics in observing patterns of learning so as to identify changes necessary in teaching strategies in order to promote the right educational experiences.

Each of these objectives highlights an ongoing process of enhancement within the educational process and gives educators a roadmap that is malleable based on the results being yielded.


Research Methodology

This study employs a qualitative approach, analyzing how closed-loop systems can enhance personalized learning through feedback mechanisms. Traditional models are rigid, most of which leads to differences in educational achievements. By using the closed-loop model, educational institutions may be able to use feedback close to the learning delivery to improve its process. The methodology involves examining case studies and literature on closed-loop control in education, focusing on the following components:

- System Design and Feedback Mechanisms: Examine how feedback approaches in the context of learning
 can address unique learning requirements and enhance the delivery of education. The various parts of the
 system include a tracking system, data acquisition, analysis in near-real time, and the decision support
 system that provides recommendations for changing instructional delivery based on performance metrics.
- Data Collection and Analysis: Create resources for assessment of sustained formative student information
 as to their progress, their interest, and their understanding. This information is fed into the process for the
 system to determine learner needs and foster instructional modifications correspondingly.

• Case Studies and Simulations: Generate and apply controlled live cases and simulations that demonstrate a closed-loop feedback system in educational contexts. These practical implementations of feedback help to figure out how they are done when learning in real-time and the benefits of adaptive teaching.

By focusing on these elements, the research examines closed-loop systems' ability to personalize and optimize learning. This methodological approach fits into the idea of creating the system capable of unceasing improvement of educational practices with reference to the gained data to apply in the context of an instructional intervention for learners and to promote the dynamic learning environment. Here's how this can be done:

The diagram above provides a conceptual framework illustrating a training and integration process intended to align educational outputs with labor market requirements. It appears to focus on educational, vocational and skills training, specifically aimed at individuals coming from various education graduation and backgrounds (grades 4–9, general secondary education, and equivalent). The goal is to ensure that these individuals are prepared to meet both general and specific labor market demands.

Theoretical Framework

Closed-loop systems rely on a feedback mechanism that continuously monitors outputs and adjusts inputs to meet a specified objective (Benjamin, 2012). In education, this mechanism could be used for oversight of student learning and modification of student activities to meet the goals of education. For example, as students interact with instructional content during learning, it could assess their understanding and the difficulty or frequency of lessons that are delivered. This theoretical framework considers closed loop principles in the learning design process that seek to meet students' needs and learning targets to optimize the learning profile of each student (Abdulwahed et al., 2008). Moreover, this framework supports instructional responsiveness, where real-time feedback enables educators to adjust teaching methods and materials to address learning gaps. This is particularly important in a learning environment where there are various learning capacities and ensures that all students are provided with an equal chance to learn.

Research Outcomes

Enhanced Student Engagement

Closed-loop control systems in education enhance student engagement by tailoring the learning experience to each student's progress. This approach to teaching implies that the lessons cater for students' current level and rate of learning, which makes the learning process more meaningful. If the engagement levels are constantly being observed and observed to be declining, educators can effectively address the disengagement immediately. This dynamic adjustment does not only make students motivated, but it also makes learners valued and wanted, as if their needs and preferences as learners are considered (Wade et al., 2022). Ongoing involvement enhances the level of students'

contribution to learning, minimizes the number of relapses, and enhances an appropriate attitude toward the learning process.

Improved Learning Outcomes

A closed-loop control system's ability to adapt to real-time student performance significantly boosts learning outcomes. It also makes it easy for the educators to identify knowledge deficits and offer the compilations as needed. Ongoing evaluations of student performance feed into changes in instructional methods and learning interventions to enhance continued teacher relevance. This dynamic approach allows mastery of concepts of the thoughts achieved through supporting the differentiation of instructions provided according to the learners' needs (Wade et al., 2022). Thus, students not only learn foundations effectively and for a longer period, but they are able to apply the learned knowledge in practice, which helps to create enhanced learning experiences.

Efficient Resource Utilization

Closed-loop control systems optimize the allocation of educational resources by providing data-driven insights into areas needing the most attention. Schools can thereafter look at the patterns of performance and their students' engagement with the content; they can determine where to get the most bang out of their buck, especially when it comes to tossing darts with extra help such as tutors or offering more complex tools. This purposeful concentration reduces wastage of funds, time, and other learning resources within the teacher institution and education material. Focusing on students' needs is significant because, through proper distribution of resources, effectiveness can be added to the administration of educational assets by developing an environment for quality learning within the reach of costs and admission of different institutional needs.

Predictable and Measurable Learning Outcomes

Closed-loop systems generate continuous feedback on learning progress, allowing educators to predict outcomes with greater accuracy. These systems use identifiable data patterns to provide information about learning patterns amongst individuals and the group with a view to modifying teaching methods and content. This makes the goals well defined and quantifiable, and the process of evaluating them well structured. Using clear and understandable analysis, instructional effectiveness may be confirmed by educators, and choices made to guarantee alignment with targets may be made. Its effect is that what is expected and taught is better known and more consistently produced, thereby lending to the education process its dependable efficacy.

Discussion and Implications

The application of closed-loop systems in education offers a transformative approach to teaching, emphasizing responsiveness and customization. Synchronous learning models still stick with predetermined time tables and techniques of teaching that do not capture the individuality of students. Furthermore, students who need more time and support will struggle, and, on the other hand, students ready to do more challenging exercises are bored. Closed-loop systems fit in to fill this gap because they are closed-loop and interactive, allowing for ongoing assessment and real-time modification of instruction (Abdulwahed et al., 2008). This is dynamic in nature, which will create an atmosphere where teaching will be for each and every student at their own pace and their need for remedial or advanced teaching.

Closed-loop learning technology systems rely on learning analytics and artificial intelligence to track such student measures as achievement and participation and adapt course material and teaching methodologies dependent on these measures. This enhances increased personnel achievement and reduces the gap between the slower and faster learners since every learner is encouraged to understand the lesson. Proper attention to the requirements and expectations of each learner allows a teacher to keep each learner on his or her toes, thus enhancing results.

The implications of this approach extend to education policy and curriculum design, advocating for a shift from traditional, one-size-fits-all models to adaptive learning frameworks. Closed-loop systems also have promise in disrupting assessment practices in substantial ways. Especially, this model involves constant approaches and evaluations, suggesting that the performance is not evaluated once in a while as in the case of the summative evaluation model but formative assessments, which allow students to learn in the process of education. Such an approach is consistent with modern tendencies in the assessment paradigm that shift the focus away from memorization and toward the ethos of developing problem-solving skills.

Conclusion

Closed-loop control systems can be viewed as a rather effective approach to improving the management of education, especially in contexts that call for individualized training and immediate feedback. By employing continuous feedback mechanisms, educational institutions can optimize learning pathways, allocate resources effectively, and predict educational outcomes with greater precision. Closed-loop objectives are compatible with current trends in education, where educational systems should be more open to individual learning conditions, more responsive, and more efficient. The closed-loop framework therefore forms a basis for future educational plans, especially in environments where diffusion in learning pedagogies is essential due to varying learning requirements among students. Adopting closed-loop concepts as educational prerequisites can help reestablish a more flexible, more evidence-based teaching model that adheres to objectives more in line with current education expectations and can lead to enhanced student attention, increased learning, and better utilization of resources.

Conflict of Interest: None declared.

Ethical Approval: Not applicable.

Funding: None.

References

Abdulwahed, M., Nagy, Z. K., & Blanchard, R. E. (2008). Using feedback control engineering for analyzing and designing an effective lecturing model. *Journal of Engineering Education*, 97(1), 61-70.

Benjamin, C. (2012). Feedback for enhanced student performance: Lessons from simple control theory. *Engineering Education*, 7(1), 14-25.

Ghita, M., Neckebroek, M., Muresan, C., & Copot, D. (2020). Closed-loop control of anesthesia: Survey on actual trends, challenges and perspectives. *Ieee Access*, 8, 206264-206279.

Wade, J., Dow, S., Gerardo, H., Gessner, R., & Hargis, J. (2022, July). Closed-Loop Dynamically Adaptive Educational Systems. In *INCOSE International Symposium* (Vol. 32, pp. 109-118).

Author Biography

Dr. Eng. Humoud Abdulhamid Saqr Alqattan

Dr. Eng. Humoud Abdulhamid Saqr Alqattan is a distinguished academic and researcher affiliated with the Public Authority for Applied Education and Training (PAAET), Kuwait. He earned his Ph.D. in Management and Information Systems from Brunel University, an MBA from Maastricht School of Management, and a B.Sc. in Electrical Engineering from Kuwait University.

With more than two decades of academic and administrative experience, Dr. Alqattan has served in several senior positions, including Head of Student Affairs, Director of Admission and Registration, Assistant Dean for Training Affairs, and Acting Deputy Director General of the Training Sector. His leadership has been instrumental in developing curricula, training programs, and institutional regulations that have enhanced both educational quality and administrative efficiency.

His scholarly contributions span engineering, management, and educational development, with publications in international journals and conferences on renewable energy, quality assurance in higher education, and knowledge management. He has also authored specialized training materials in electrical engineering and contributed to curriculum development at the Higher Institute of Energy.

Dr. Alqattan holds professional certifications as a Project Management Professional (PMP), IRCA-certified Lead Auditor in Quality, and ATD-certified talent development trainer. He is actively engaged in professional associations including the Kuwait Society of Engineers, the Kuwait Economic Society, and the Project Management Institute. His ongoing research and professional service reflect a commitment to advancing education, innovation, and applied research at both national and international levels.

Afrah Abdullah Al-Radaan

Afrah Abdullah Al-Radaan serves as a specialized trainer at the Higher Institute for Administrative Services, within the Public Authority for Applied Education and Training, a position she has held since 2014. She has accumulated over fifteen years of professional experience in the fields of management and training. Her career includes serving as Senior Administrative Coordinator at Kuwait University, both in the Faculty of Law and in the Deanship of Student Affairs, in addition to her earlier role at the Ministry of Education within the Department of Student Affairs.

Al-Radaan earned a Master of Business Administration (MBA) from Gulf University in Bahrain, following a Bachelor's degree in Business Administration with a concentration in Organization and Management from Kuwait University. Complementing her academic credentials, she has obtained several internationally recognized professional certifications in training and educational consultancy from institutions in the United States, Canada, and the United Kingdom.

Her scholarly contributions include the co-authorship of a peer-reviewed research study published in 2020, examining the impact of cooperative learning strategies on the management of the training process. She has also actively participated in a wide range of academic conferences, professional workshops, and community-based training initiatives. Her expertise is characterized by strong communication and motivational skills, a commitment to research excellence, and an ability to foster collaborative work environments. Furthermore, she holds active membership in multiple professional and humanitarian organizations, including the Kuwait Human Rights Society, the Kuwait Red Crescent, and the Arab Trainers Forum.

Disclaimer/Publisher's Note: The views, opinions, and data presented in all publications are exclusively those of the individual author(s) and contributor(s) and do not necessarily reflect the position of BRPI or its editorial team. BRPI and the editorial team disclaim any liability for any harm to individuals or property arising from the use of any ideas, methods, instructions, or products mentioned in the content.